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Outline

l. MINERVA experiment
a. Neutrinos and MINERVA detector
b. Vertex finding and hadron multiplicity problem

ll. Deep Learning
a. Deep Neural Networks
b. Convolutional Neural Networks (CNNs)
c. CNN’s design difficulties

lll. Inferring CNNSs’ accuracy before training time
a. Architectural characterizations

b. Predicting CNNs’ accuracy based on characterizations — why
IS it useful?

V. Summary & Outlook
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Neutrinos

 Neutrinos are fundamental.

« They are electrically neutral "partners" of the familiar charged

leptons (e.g., electrons).
* They are very light,

« They very rarely interact with other particles

Proton

@® FProtons
‘? Neutrons
®_Electrons
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MINERVA

* Nuclear effects with a
variety of target materials
ranging from Helium to
Lead.

- Fine-grained resolution
for excellent kinematic
measurements.
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Vertex Finding and Hadron Multiplicity problem
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Deep Neural Networks
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Convolutional Neural Networks (CNNs)

« Similar concept to Deep Neural Networks, but highly effective for image
inputs, and modern neutrino detectors are imaging detectors.
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Difficulty

« There is no universal CNN design for every tasks.

« And designing an appropriate structure/architecture of CNN
takes a lot of time and effort even for the experts.

* There is no systematic way to design CNNs: mainly rely on
human intuition and random/grid search.

« Computationally expensive to train a CNN model.

-------------------------------------------------------------
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Objectives

Examples of architectural

Propose a systematic_ attributes we extracted (32 in
language to characterize total):

CNN’s architecture, and
demonstrate that they can be
predictive of a CNN’s
accuracy.

> Number of convolutional
layers.

» Number of rectified linear
unit (ReLU) activated
convolutional layers.

Suggest architectural
99 » Average depth

changes to CNNs for
different physics tasks (vertex
finding and hadron
multiplicity)
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Method

Important architecture
of CNN for physics task

Interpret the models

Machine
Learning models
(classification
and regression)

Architectural

.y CNN performance (accurac
characterizations P ( y)
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Classification
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Classification results

* Machine Learning models perform significantly better than
random guessing (50% when there is no class overflow):

Average 5-fold cross-
.y a Accuracy on test set
validation scores

Random Forest 70.3 + 0.006 % 70.6 %

Extremely Randomized Tree 70.2 + 0.003 % 70.5 %

« Were also able to extract important features to suggest
architectural changes to CNNs. More details in paper.

—}— standard deviation | e Importance
*_FFH—H\\\\% aaaaaaaaaaaaaaaa
0.66
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Regression on just healthy networks

13

Fitted an non-linear Ordinary Least Square model on just the
healthy networks.

10 A1
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Regression results

« Models fitted on two populations of vertex finding CNNs:

R? of OLS Number of Healthy CNNs

First 0.426 49276
Second 0.295 21415
Combined 0.961 70691

« Limitations: Still not enough parameters to characterize the
detailed relationship between CNN'’s architecture and its
performance. P Planning to extend attribute set in the future.
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Outlook & Summary

» Proposed a systematic language to characterize
convolutional neural networks architecture.

» Successfully demonstrated that we can use those parameters
to predict whether a network is “good”.

» There are limitations to predict the exact accuracy, but initial
results are promising. Extension of the attributes set might
help in the future.

» One of the early studies about relationship between CNN’s
architecture and its performance.

» More details in our up-coming paper.
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K-folds cross validation

19

Split 1
Split 2
Split 3
Split 4

Split 5
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Final evaluation {
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All Data
Training data Test data
Foldl || Fold2 || Fold3 || Fold4 || Fold5 |\
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
> Finding Parameters
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Foldl || Fold2 || Fold3 || Fold4 || Fold5 @/

Test data
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Architectural characterizations of CNNs

 Different deep learning

depth
problems require height Good
: N Q0000HY - for the
different network )~ 00000 - —
Width task?

architecture.

 However, selecting an
appropriate architecture
for CNNs is usually done
by human intuition or
random search

* |If we have a way to
uniformly characterize a
network architecture,
then it would be
particularly useful.
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Random Forest and Extremely Randomized Tree
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